The Tippe Top

In classical mechanics, the movement of rigid bodies is generally described by two analogous vector equations: $F = dp/dt$ for translation of the centre of mass, and $M = dL/dt$ for rotation around the centre of mass, with F the total external force, p the momentum, M the total moment of external forces, and L the angular momentum.

We consider the intriguing movement of the tippe top. It consists of a spherical body and a cylindrical stem, with the centre of mass CM displaced from the centre c of the sphere (see Fig. 1). When initially put into rotation around its axis of symmetry e_3 vertical, the stem gradually moves downwards and finally the top flips over into a stable vertical rotation on the stem. Apparently the rotation has changed sign, while vector L has preserved its original vertical position. Further, CM has moved upwards at the cost of a decrease in magnitude of L. This unexpected behaviour is explained by the action of a friction force F at the (slipping) contact point of the top with the surface (red star pointing towards the reader).

F causes a moment M, which can be imagined to have vector components $M_{1,2}$ and M_3, the latter along the axis of symmetry e_3. Likewise, the angular momentum L has components $L_{1,2}$ and L_3. In the beginning, $L_3 = L$ and $L_{1,2} = 0$. Then, due to instability, F originates and the resulting M_3 tends to decrease L_3, while $M_{1,2}$ starts to increase $L_{1,2}$. As L remains constant, the angle θ of the top's inclination will grow to fulfil proper vector addition. When $\theta = \pi/2$, $L_3 = 0$ and $L_{1,2} = L$.

![Diagram of the Tippe Top](image)

Fig. 1

Then the rotation along e_3 changes sign and, again through the action of $M_{1,2}$ and M_3, L_3 starts to grow at the cost of $L_{1,2}$. Finally, the stem will scrape the surface (see Fig. 2) and through the action of a new frictional force F' with moment M' the top will lift itself up and
strive towards a stable, though extinguishing, rotation on the stem. In fact, the component \(L_{1,2} \) is extinguished by the new \(M_{1,2} \) and \(L_3 \) finally becomes equal to \(L \).

Fig. 2

FAB, 2007-10-31